Shiga toxin attacks bacterial ribosomes as effectively as eucaryotic ribosomes.

نویسندگان

  • J K Suh
  • C J Hovde
  • J D Robertus
چکیده

Several pathogenic bacteria, including Shigelladysenteriae and certain strains of Escherichia coli, produce potent class 2 ribosome inhibiting proteins (RIPs) termed Shiga toxins (Stx). The toxins are bipartite molecules composed of a single A chain (StxA) noncovalently associated with a pentamer of receptor-binding B subunits (StxB). StxA and Stx1A from E. coli are protoxins. Proteolysis generates an A1 enzyme (28 kDa) and an A2 fragment (3 kDa), which remain bound, inactivating the enzyme, until a disulfide bond linking them is reduced. Efforts to express active recombinant Stx1A1 in the cytoplasm of E. coli were very difficult and led to the hypothesis that Stx1A1 is toxic to E. coli. We created the gene for a His-tagged Stx1A1 (cStx1A1) and expressed it in E. coli from a tightly controlled expression vector. About 1-2 mg of protein can be purified in a one-step isolation from 1 L of culture. cStx1A1, RTA, and PAP exhibited similar high toxicity against the Artemia ribosomes with IC50 values near 1 nM. Surprisingly, Stx1A1 had an IC50 of 0.8 nM against E. coli ribosomes, about the same as it had for Artemia ribosomes. This is about 250 times more active than PAP against bacterial targets, making Stx1A1 the most powerful RIP toxin presently known against E. coli ribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors.

The committee hailed this publication as the first report of the precise molecular function of a bacterial protein virulence factor. This study most certainly served as an inspiration to a number of scientists working on the modes of action of other bacterial toxins such as cholera toxin and Pseudomonas exotoxin A, and it heralded the beginning of the field of molecular and biochemical analysis...

متن کامل

Shigella toxin inhibition of binding and translation of polyuridylic acid by Escherichia coli ribosomes.

Shigella toxin inhibits polyuridylic acid-directed polymerization of phenylalanine in ribosome-enzyme systems obtained from Escherichia coli or from Shigella dysenteriae. The inhibition is the result of toxin acting on ribosomes to prevent polyuridylic acid attachment.

متن کامل

The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis.

The effect of Shiga toxin, from Shigella dysenteriae 1, on the component reactions of peptide elongation were investigated. Enzymic binding of [3H]phenylalanine-tRNA to reticulocyte ribosomes was inhibited by 50% at 7 nM toxin. Elongation factor 1 (eEF-1)-dependent GTPase activity was also inhibited. Both reactions were not restored by addition of excess eEF-1 protein. In contrast, toxin concen...

متن کامل

Investigation of ribosome binding by the Shiga toxin A1 subunit, using competition and site-directed mutagenesis.

The enzymatic subunit of Shiga toxin (StxA1) is a member of the ribosome-inactivating protein (RIP) family, which includes the ricin A chain as well as other examples of plant toxins. StxA1 catalytically depurinates a well-conserved GAGA tetra-loop of 28S rRNA which lies in the acceptor site of eukaryotic ribosomes. The specific activities of native StxA1, as well as mutated forms of the enzyme...

متن کامل

Baicalin inhibits the lethality of Shiga-like toxin 2 in mice.

Shiga-like toxins (Stxs), produced by pathogenic Escherichia coli, are a major virulence factor involved in severe diseases in human and animals. These toxins are ribosome-inactivating proteins, and treatment for diseases caused by them is not available. Therefore, there is an urgent need for agents capable of effectively targeting this lethal toxin. In this study, we identified baicalin, a fla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 26  شماره 

صفحات  -

تاریخ انتشار 1998